資料・研究ノート

The Bank of Thailand Model and Its Application to Policy Simulations*

Mitsuo Ezaki**

I Introduction

There exist only a few macroeconometric models for the Thai economy. A simple but pioneering model was constructed in the middle of the 1960's by Chinawoot Soonthornsima [1964], while detailed and comprehensive models were developed only recently by Chulalongkorn University (Virabongsa Ramangkura [1975, 1976]) and the Bank of Thailand (Olarn Chaipravat [1976], Olarn Chaipravat, Kanitta Meesook and

** 江崎光男, The Center for Southeast Asian Studies, Kyoto University

Siri Ganjarerndee [1979a], etc.).¹⁾ The Bank of Thailand model (abbreviated as BOT model) is now under continuous revisions and improvements in accordance with updated basic data. It is employed as the country model for Thailand in the Asian Sub-Link Project of the Center for Southeast Asian Studies, Kyoto University.²⁾ The purpose of this paper is to investigate basic features and workabilities of the BOT model theoretically and empirically (Section 2), and to derive some policy implications for the Thai economy based on the simulation analyses applied to the BOT model (Section 3). The present paper may be considered as a supplement to the research works of the Bank of Thailand on the macroeconometric model building for the Thai economy.³⁾

^{*} The present paper depends on the progress report for the medium-term projections project of ESCAP drafted in October 1979 by the author who had worked at Development Planning Division, ESCAP, as an economic affairs officer for the one-year fixed term from November 9, 1978 to November 8, 1979. The paper owes much to the valuable assistance and cooperation given by Mr. Olarn Chaipravat, Mrs. Kanitta Meesook and Mr. Siri Ganjarerndee of Department of Economic Research, Bank of Thailand, Mr. K. Clark, Mr. R. Siegel and Mr. S. Arai of Data Processing Section, ESCAP, and Mr. A. Kohno and Mr. S. Abe of Development Planning Division, ESCAP, to whom deep appreciations are expressed. Views and remaining errors in the paper, however, are solely of the author.

¹⁾ See Olarn Chaipravat [1976] for a brief chronology and assessment of the Thai econometric models.

²⁾ The project is organized and headed by Professor Shinichi Ichimura. The BOT model is adopted as a country model also in the medium-term projections project of ESCAP.

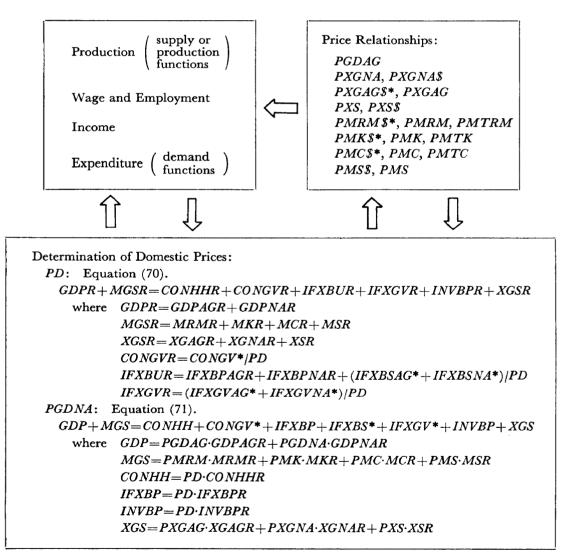
³⁾ See Olarn Chaipravat, Kanitta Meesook and Siri Ganjarerndee [1979b] for the current version of BOT model. See its references for the earlier versions and the related researches made at Bank of Thailand.

II Basic Features and Workabilities of the BOT Model

The latest version of Bank of Thailand model was presented at the Asian Sub-Link Project Symposium held on March 22-24, 1979 in Kyoto, Japan. The symposium paper (Olarn Chaipravat, Kanitta Meesook and Siri Ganjarerndee [1979a] or [1979b]) contains not only a full presentation of the whole system of BOT model but also a detailed explanation on each structural equation, giving relevant economic backgrounds in the Thai economy.⁴⁾ Here we will pinpoint a general equilibrium framework adopted for the Thai economy which may be considered as the most essential feature of the BOT model and, then, discuss about several other features and workabilities of the model based on such testing simulations as partial, total and final tests, which are not shown in the symposium paper mentioned above.

II-1 General Equilibrium Setup of the BOT Model

The Bank of Thailand model is a non-linear system of 184 equations, of which the first 115 equations constitute the real sector of the system while the remaining 69 equations describe the financial sector of the system. Variables in the real sector consist of productions, expenditures (including exports and imports), incomes (including tax revenues), prices, wages, employment, capital stocks, and so on. These real variables are dependent, more or less, on the financial sector through the following financial variables (where * means exogenous):


FTDHBCB, FSDHBCB, FTDHBFC, FSDHBFC, FDDHBFC, FSTHBGS, FGBHHGV*, RLCB, RLFC, RTDCB*, RSDCB*, RTDFC*, RSDFC*, RDDFC*, RTGS*, RGBHH*, and RFO*.

Variables in the financial sector, on the other hand, consist of deposits, lendings, borrowings, interest rates, etc., in the four major financial institutions of Thailand (i.e., commercial banks, finance companies, government saving bank and central bank). Variables corresponding to the balance of payments account constitute the final part of the financial sector. These financial variables are also dependent on the real sector through a number of real variables, so that the system as a whole is a system of interdependence to be determined simul-However, the interactions taneously. between real and financial sectors are not symmetrical in that the dependence of the financial sector on the real sector is far stronger than the converse. Equations in the system except identities are all estimated by ordinary least squares method (OLS). Real equations are estimated for the period around 1961-1976, while financial equations are estimated for 1969-1976.

There are four supply-demand equilibrium conditions in the BOT model.

⁴⁾ See the symposium paper for the notation and structural equations of BOT model, which are omitted here to save space.

One is in the real sector and the other three are in the financial sector. Most of the variables in the real sector are interdependent with each other in a complicated manner. From the aggregate point of view, however, there exists a key equation which plays a role of mediator in the complex interdependent system of the real sector. It is the real aggregate demand and supply equality of goods and services (eq. (70) which is the equilibrium condition) to determine domestic price level (PD) which is the deflator for both consumption and investment expenditures). This framework is illustrated in Fig. 1. The main part of the real sector is the production-employment-income-expenditure block, in which variables are not only interdependent with each other but also dependent on PD and other prices (and also on several financial variables listed above). PD, on the other hand, is dependent on the levels of various demands (CONHHR,..., XGSR

and MGSR) and supplies (GDPR) which are determined in the main block.⁵⁾ The same is true for PGDNA (nonagricultural price deflator) to be determined by the nominal aggregate demand and supply identity (eq. (71)).⁶⁾ The other prices are dependent on PD and PGDNA but not on the variables in the main block. Note that eq. (70) of Fig. 1, which describes the equilibrium condition directly in the form of implicit function, must be transformed into alternative explicit form with PD on the left-hand side:

PD=(CONGV*+IFXGVAG* +IFXGVNA*+IFXBSAG* +IFXBSNA*)/(GDPR +MGSR-CONHHR -IFXBPAGR-IFXBPNAR -INVBPR-XGSR)

Such a transformation is necessary in solving the non-linear system of BOT model by the Gauss-Seidel method.⁷⁾ The same is true for eq. (71), whose alternative expression is:

$$PGDNA = \frac{1}{GDPNAR} [CONHH + CONGV* + IFXBP + IFXBS + IFXGV + INVBP + XGS - GDPAG - MGS]$$

These may be regarded as an ingeneous device in the real sector of BOT model.

The financial sector of BOT model has three supply-demand equilibrium conditions. The first is the market clearing equation for loans, overdrafts and discounts of commercial banks (FLNCBBU) to determine commercial banks' lending rate (RLCB). The second is the market clearing identity for loans and discounts of finance companies (FLDFCBU) to determine finance companies' lending rate (RLFC). The third is the identity between supply of and demand for interbank loans from commercial banks to finance companies (FLOCBFC) to determine interbank market rate of interest (RIB). These three equilibrium identities together with their supply and demand components, which are summarized in Table 1, constitute the main and essential part of the financial sector in the BOT model. The equilibrium framework of the financial sector is clearcut and rather straightforward compared to that of the real sector, because various supply and demand equations are directly connected with the market clearing equilibrium identities. It is quite interesting to see that the sign conditions are satisfied completely not only for income or saving variables but also for relevant interest rates in component demand and supply functions. As stated for the real sector, the Gauss-Seidel method requires to express every endogenous variable by an explicit function of other variables, so that the three equilibrium equations ((145), (165) and (169)) are solved for the three equilibrium interest rates (RLCB, RLFC and RIB) respectively in the actual

⁵⁾ MGSR is determined by the demand factors but not by the supply conditions, so that MGSR may better be placed on the righthand side of eq. (70) with minus sign.

⁶⁾ Another appropriate variable, if any, may be selected in place of PGDNA as a variable to be determined by this nominal identity.

⁷⁾ See the appendix of this paper for the Gauss-Seidel method.

Tabl	e 1	Equilibrium Setup of the Financial Sector
RLCB:	FI	LNCBBU ^s =FLNCBBU ^d (eq. 145)
(144)	FL	$VCBBU^{s} = f(FDFXXCB, RLCB)$
(132)	F	DFXXCB = FDTXXCB - (FRCCBBT)
		+FRBCBGV+FBCCBGV
		+FCDCDBA)
(127–1	3 0)	=(1-ZK1*-ZK2*)
		-ZM1*-ZM2*)
(101)	_	FDTXXCB
(131)	F	DTXXCB = FDTHBCB + FDTOFCB
		+FDTFOCB* +FDTGVCB*
(133)		FDTHBCB=FDDHBCB
(155)		+FSDHBCB
		+FTDHBCB
(152)		FDDHBCB = f(GDP, ENBCB*,
		RDDFC*,
		<i>RSDCB</i> *,
		$RTDCB^{(-)}CB^{(+)}$
(153)		FSDHBCB = f(USVHH, ENBCB*,
		$RSDCB^{(+)}, \text{ etc.})$ FTDHBCB=f(USVHH, ENBCB*,
(154)		FTDHBCB = f(USVHH, ENBCB*, (+))
		$RTDCB^{(+)}_{CB^{(+)}}$, etc.)
(155)		FDTOFCB = f(GDP, (+))
		<i>RTDCB</i> *3 <i>RIB</i>)
(145)	FL	$NCBBU^{d} = FLOCBBU + FDDCBBU$
		+FDMCBBU+FDXCBFO
(140)	F	LOCBBU = f(GDP,
		$RLCB \stackrel{(-)}{-}.9RLFC)$
(141)	F	DDCBBU = f(GDP,
		$RLCB^{(-)}_{-}.99RLFC)$
(142)	F	DMCBBU = f(MGS,
		$RLCB \stackrel{(-)}{-}.9RFO*)$
(143)	F	DXCBFO = f(XGS,
		$RLCB \stackrel{(-)}{-}.01 RFO*)$
RLFC:	FI	$DFCBU^{d} = FLDFCBU^{s}$ (eq. 165)
		$DFCBU^{d} = f(IFXTO, RLFC)$
(165)	FLI	$01(RLCB+RFO^*))$ DFCBU ^s =f(FDFXXFC, RLFC
()		9 <i>RSH</i> *)
(162)	F	DFXXFC=FDTXXFC-FRBFCGV
(160)		$=(1-ZK3^*)\cdot FDTXXFC$
•		

(146)
$$FLOCBFC^{*} = f(FDTXXCB,$$

 $RIB - .99(RLCB + RFO* + RGB*))$

* Numbers in brackets are equation numbers. Signs in brackets mean those of the estimated coefficients. PD=growth rate of PD. Note that, in the original formulation, the last three interest rates of eq. (152) are combined into a weighted average (.3RDDFC*+ .5RSDCB*+.2RTDCB*) as in eqs. (155), (140) and so on. The same is true for the interest rates in eqs. (153), (154), (166) and (137). The best weighting scheme is searched for empirically by using goodness of fit criteria in the BOT model.

device in the real sector of BOT model. computation.⁸⁾

The 28 endogenous variables in the financial sector that correspond to the 28 financial equations of Table 1 are not only interdependent with each other but also dependent on such variables in the real sector as GDP, USVHH, MGS, XGS

⁸⁾ See alternative expressions of eqs. (145), (165) and (169) shown in the symposium paper.

and IFXTO (and also on the exogenous variables). On the other hand, the real sector is dependent on such variables in the financial sector as *RLCB*, *RLFC*, *FTDHBCB*, *FSDHBCB*, *FTDHBFC*, *FSDHBFC*, *FDDHBFC* and *FSTHBGS*, all of which except the last appear in the equilibrium framework of Table 1. The last *FSTHBGS* is determined by eq. (173) with one real and several exogenous variables on the right-hand side:

(173) FSTHBGS

= f(USVHH, RSTGS*)-.1(RTDFC*+RTDCB*))

Therefore, the real sector plus the main part of the financial sector (Table 1) plus equation (173) can be regarded as a selfcomplete system without any feed-back effects from the rest of the financial sector. The rest of the financial sector including the balance of payments account is determined only recursively, so that such important variables as net foreign capital inflow of private sector (FKFBPFO), overall balance of payments position (UBP\$), etc. can affect neither the performance of the real sector nor the key variables in the financial sector. This seems to be a weak point in the BOT model.

II-2 Testing Traceability of the BOT Model

To what extent a model traces the actual economy can be checked by comparing the estimated values of each variable in the model with the corresponding actual data for the estimation period. Three methods are usually used to see this traceability of a model. The first is the partial test, by which the goodness of fit is checked for each equation separately using actual data for all of the explanatory variables in each equation without distinguishing between endogenous and predetermined (lagged endogenous+exogenous) variables. The second is the total test, by which the goodness of fit is checked for the model as a whole simultaneously but statically using actual data for all of the predetermined variables without distinguishing between lagged endogenous and exogenous variables in solving the system. The third is the final test, by which the goodness of fit is checked for the model as a whole simultaneously and dynamically using estimated values for the lagged endogenous variables in solving the system in each period successively. Not to mention, the total test is a case of the static simulation while the final test is a case of the dynamic simulation.

The final test is important among others in the sense that the performance of a model can be unsatisfactory in the light of the final test even if it is quite satisfactory in the light of the partial and total tests. However, all of the three testing methods have been applied to the BOT model since each method has some merits of its own. For example, the partial test can be applied to identities to check their correctness. Actually, errors or inconsistencies, though not serious, were found in several identities in the financial sector of BOT model (i.e., eqs. (116), (159), (161) and (183)). The results of partial test for the estimated equations of BOT model are generally satisfactory, reflecting high or proper values of R^2 's and Durbin-Watson ratios. The results of total test are also fairly satisfactory.

The final test has been applied to the three cases of BOT model for the period 1969–1976⁹⁾:

- (a) the whole system,
- (b) the real sector, treating all financial variables (eqs. (116)-(184)) as exogenous, and
- (c) the financial sector, treating all real variables (eqs. (1)-(115)) as exogenous.

The results are again generally satisfactory, especially for (b) and (c). Concerning the whole system (case (a)), however, no remarkable differences are found between (a) and (b) for the real variables (1)-(115), while considerably large discrepancies are observed between (a) and (c) for several financial variables (116)-(121), (148) and (149). A bad performance of the whole system in relation to these financial variables seems to be caused by XGS (eq. (69)) and MGS (eq. (37)) through UBP (eq. (180)) and UBA\$ (eq. (181)). Traceability of the whole system is fairly good for the other financial variables including the three key interest rates and the demand and supply equations which

determine them (See Table 1). The whole system (real+financial) excluding financial variables of bad performance (i.e., equations (116)-(121), etc.) is selfcomplete since those financial variables of bad performance are determined only recursively without giving any feed-back effects to the rest of the system.¹⁰⁾ It seems, therefore, possible to effectively make various policy simulations based on the whole system, neglecting the results on several financial variables which are probably misleading but have no effects on the essential part of the system.

Though most of the endogenous variables are generally traced well for the real sector, some important quantities such as GDPAGR, GDPNAR, GDPR, etc. tend to be underestimated slightly in earlier years of the estimation period while overestimated slightly in later years, resulting in a slight overestimation of their growth rates for the sample period. Corresponding nominal values, on the other hand, are simulated well without showing any tendency of overestimation or underestimation. As a result, key aggregate prices such as PD, PGDNA, PGDAG, etc. tend to be overestimated slightly in earlier years while underestimated slightly in later years, indicating a slight underestimation of their growth rates in the sample period. It is difficult to find direct and clearcut reasons for the bias consistently observed for several key

⁹⁾ Note that the estimation period for the financial equations is 1969–1976. The final test for 1963–1976 was also tried for the real sector.

¹⁰⁾ It should be noted that a smaller system consisting of the real sector, equations of Table 1 and eq. (173) is self-complete as explained before.

variables of the real sector in testing the BOT model dynamically by final test.

III Policy Simulations for the Thai Economy: 1972–1976

Various policy simulations have been attempted for the Thai economy, giving shocks to several selected exogenous variables in the BOT model:

- (1) public consumption expenditures (CONGV)
- (2) public investment expenditures (IFXBSAG, IFXBSNA, IFXGVAG and IFXGVNA treated as a group)
- (3) exchange rate (ZXR\$)
- (4) world income (GDPWR1 and GDPWR2 treated as a group)
- (5) price of imported raw materials and fuels (*PMRM\$*), and
- (6) price of export of agricultural products (*PXGAG\$*).

Shocks are given to these exogenous variables in the form of increasing their levels by 10% from their actual values either throughout the simulation period (1972–1976) or in the starting year (1972) only:

- (i) sustained shocks given for the 1972–1976 period, and
- (ii) once-and-for-all shocks given in 1972 only.

The simulation results for these shocked cases are compared with the standard simulation without shocks, which is the same as the final test for the 1972–1976 period, to derive policy implications for the Thai economy. Furthermore, the shocked simulations are applied to two cases of the BOT model:

- (a) the whole system, and
- (b) the real sector, treating all of the financial variables as exogenous,

which make it possible to clarify further the structure and characteristics of the BOT model. The shocked simulations, therefore, have been attempted in 24 $(6 \times 2 \times 2)$ ways for the 1972–1976 period. Simulation results on the sustained shocks are summarized in Appendix Tables A.1-A.8 on several key variables (i.e., GDPR, GDP, PD, USVFO\$ and RLCB) for illustrative purposes.¹¹⁾ These tables are useful to see the time pattern of the changes in key endogenous variables caused by various external shocks. Here we discuss results on the sustained shocks only in terms of the multipliers and elasticities averaged for the simulation period 1972-1976. Results on the onceand-for-all shocks are not referred to here since they are quite similar to and less conspicuous than those on the sustained shocks.

III–1 Sustained Shocks on the Public Expenditures

Public expenditures are often discussed in connection with their multiplier effects on various aspects of the aggregate economy. Since the exogenous shocks were given to *nominal* public expenditures (i.e., government consumption expenditures (CONGV) and investment expenditures of state enterprises and general government (IFXBSAG, IFXBSNA, IFXGVAG

¹¹⁾ The original results (i.e., computer printouts) cover all of the 184 endogenous variables.

and *IFXGVNA*)), we discuss here the multipliers in nominal terms and supplement them with relevant elasticities. Table 2 summarizes multipliers and

Table 2Multipliers and Elasticities with
Respect to Nominal Public
Expenditures, Average Results
for 1972–1976

	Public cor Whole system	sumption Real sector	Public in Whole system	vestment Real sector
Multipliers				
GDP	1.96	2.19	1.24	1.53
GDPAG	.38	.42	.21	.25
GDPNA	1.58	1.77	1.04	1.28
XGS	005	006	.009	.008
MGS	.67	.76	.61	.73
- USVFO ^a	67	77	60	72
FKFBPFO	.03	·	001	
UBP\$⁵	63		59	
YLBNA	.98	1.10	.65	.79
Elasticities				
GDP	.204	.227	.069	.085
GDPAG	.127	.139	.037	.045
GDPNA	.238	.267	.083	.103
XGS	003	003	.003	.002
MGS	.303	.34 5	.148	.176
- USVFO*	-5.736	-6.628	-2.731	-3.323
FKFBPFO	.220		004	
UBP\$	-5.402		-2.712	
YLBNA	.212	.237	.074	.091
GDPR	.045	.053	.031	.036
GDPAGR	013	015	.003	.002
GDPNAR	.071	.082	.043	.051
XGSR	042	047	008	011
MGSR	.299	.344	.167	.197
NEMNA	.146	.163	.052	.064
WGRNA	.071	.079	.022	.027
PD	.163	.179	.039	.050
RLCB	.226		.128	
RLFC	.071		.135	
RIB	.144		.095	

^a Defined as surplus.

^b Multiplied by 20.0 to adjust exchange rate.

elasticities of several selected variables with respect to nominal public consumption and investment expenditures based on the average results for the 1972–1976 period. Note in the table that elasticities of real variables (GDPR, etc.) with respect to nominal expenditures are somewhat misleading. However, elasticities of real variables with respect to real expenditures can be estimated approximately by allowing for the elasticity of PD which is used as the common deflator for both consumption and investment in the BOT model. For example, the elasticity of GDPR with respect to real public consumption may be approximated as .045/(1.0-.163)=.054 based on the figures for the whole system in Table 2.

From the table, we can see that the multiplier or elasticity effects of public consumption are generally larger than those of public investment. This should be so possibly for the nominal variables in which price factors are automatically involved. General price levels (PD, etc.) in the BOT model are determined by various supply and demand conditions. Public consumption is a demand factor with no direct effects on production while public investment, though it is also a demand factor, directly affects production capacity through capital accumulation, resulting in far bigger price increases in the former than in the latter. Real variables (GDPR, etc.), however, show a little bigger elasticities for public consumption than for public investment in Table 2. This seems to be caused by some short-run factor with no direct

implications on supply capacities since the elasticity of GDPR with respect to CONGV tends to decline overtime for the simulation period while the elasticity for IFXBS and IFXGV has a constant tendency to increase overtime.¹²⁾ It is interesting to see in Table 2 that the elasticities of GDPAGR and XGSR (whose major components are agricultural exports) are negatively large in the case of public consumption while they are either positive or negative but very small in absolute values in the case of public investment. This is due to the shift of labor from agriculture to non-agriculture caused by the enlarged effective demand, the nature of which is different between public consumption and public investment as mentioned above.13)

The real sector of BOT model, where all of the financial variables are treated as exogenous, exaggerates slightly the multiplier or elasticity effects of public expenditures. Government deficit financing to increase its consumption and investment expenditures necessarily leads to the excess demand in the financial market, resulting in the rise in market clearing interest rates (*RLCB*, *RLFC* and *RIB*) as shown in Table 2. Results on the real sector do not allow for this aspect of interaction between real and financial markets. Yet, the discrepancies are not very large between the whole system and the real sector, indicating the role of financial sector as supplementary (but neither negligible nor unimportant) to the real sector in the actual economic activities.

III-2 Sustained Shocks on the Exchange Rate and the World Income

Let us next consider the shocked simulations for the changes in exchange rate and world income. In the former, the exchange rate of bahts per US dollars (ZXRS) was increased by 10% from about 20 B/\$ to about 22 B/\$ for the period 1972–1976. In the latter, the two kinds of world income (GDPWR1 and GDPWR2) were made higher by 10% than their actual levels during the period 1972-1976. Table 3 summarizes simulation results for the above two cases in terms of average multipliers and average elasticities.¹⁴⁾ Note that multipliers are not calculated in the latter case of world income since the data for world income are not original but in the form of indexes with unit value (1.0) for the base year.

We discuss, first, the case of exchange rate changes. We can see from Table 3 that the baht devaluation has positive and favorable effects on various aspects of the Thai economy. For example, the 10% devaluation in bahts will increase trade surplus (or decrease trade deficit) by 71 million US dollars, nominal GDP by 14 billion bahts or 5.54%, real

¹²⁾ See Tables A.1 and A.2. The same is true for GDPNAR and NEMNA, though the results on them are not shown in the appendix tables.

¹³⁾ Note that agricultural exports (XGAGR) is dependent not only on demand factors but also on supply conditions (See eq. (64)).

¹⁴⁾ See Tables A.3 and A.4 for the time pattern of the changes in key endogenous variables.

Table 3Multipliers and Elasticities with
Respect to Exchange Rate and
World Income, Average Results
for 1972–1976

				<u> </u>	
·	Exchai Whole	nge rate Real	World income Whole Real		
	system	sector	system	sector	
Multipliers*					
GDP	14,283	15,970			
GDPAG	5,765	6,061			
GDPNA	8,518	9,909			
XGS\$.45	.15			
MGS\$	-71.34	- 39.98			
-USVFO\$	71.80	40.17			
UBP\$	75.67				
FKFBPFO	50 3				
YLBNA	5,826	6,702			
Elasticities					
GDP	.554	.620	.195	.221	
GDPAG	.720	.757	.084	.097	
GDPNA	.480	.558	.246	.277	
XGS\$.002	.001	.539	.539	
MGS\$	247	139	.287	.332	
-USVFO\$	4.679	2.659	3.801	2.992	
UBP\$	4.893		3.842	<u></u>	
FKFBPFO	1.209		.054	·	
YLBNA	.470	.541	.209	.237	
GDPR	.051	.071	.058	.066	
GDPAGR	.023	.019	016	018	
GDPNAR	.064	.094	.090	.102	
XGSR	.088	.076	.517	.512	
MGSR	273	157	.283	.333	
NEMNA	.134	.179	.185	.204	
WGRNA	.356	.383	.026	.036	
PD	.516	.564	.119	.1 3 6	
RLCB	.620		.251		
RLFC	.164		.059		
RIB	.384		.162		

* Note that the figures for multipliers mean the average annual changes in the variables listed here in the case of 10% devaluation of baht (approximately from 20 B/\$ to 22 B/\$) for the 1972-1976 period. Measuring units for multipliers are either million bahts or million US dollars.

production levels (GDPR, GDPAGR and GDPNAR) by 0.2% - 0.6%, non-agricultural employment by 1.34% and so on.¹⁵⁾ The baht devaluation, of course, has unfavorable effects also for the Thai economy. For example, the same 10%devaluation will cause 5.16% increase in general price level (PD), which, however, is not large enough to offset completely the favorable effects mentioned above.¹⁶⁾ In other words, increases in nominal levels caused by devaluation will be offset to some extent by rising prices, resulting in a slight improvement of various economic activities in real terms. It may be concluded, therefore, that the devaluation of bahts will improve the balance of payments situation in Thailand without deteriorating the national welfare in real terms. The baht devaluation seems to be one of the possible measures to be discussed seriously in order to solve the balance of payments problem which Thailand is currently facing.

Multipliers and elasticities for the case of exchange rate changes in Table 3 indicate only small discrepancies between the whole system and the real sector except for those of imports (MGS) (and also those of the surplus in current balance (-USVFO) as a consequence). Imports have become exceptional because of the structure of the model. In other words, two major components of imports,

¹⁵⁾ Note that these figures are approximate averages and other conditions are assumed to be unchanged in deriving them.

¹⁶⁾ Real consumption also increases, though slightly, in spite of price increases.

i.e., import of raw materials and fuels (MRMR) and import of capital goods (MKR), receive considerable influences from interest rates (i.e., *RLCB* and *RLFC*) by the process illustrated below:

$$RLCB - \xrightarrow[(-)]{(-)} IFXBPNAR$$

$$RLFC - \xrightarrow[(+)]{KFXBPNAR} GDPNAR \xrightarrow{(+)} MKR MRMR$$

The real sector where all of the financial variables including *RLCB* and *RLFC* are treated as exogenous cannot allow for this dependency on the financial sector, resulting in a considerable discrepancy for imports (*MGS*\$) in Table 3. We must be very careful in dealing with the financial sector because we may obtain misleading results on some variables if the financial sector is completely neglected.

Let us next consider the case where the world income was changed. The results are more or less similar to those of the previous case where the exchange rate was changed but, in nature, more moderate and more favorable for the Thai economy. In other words, the rise in foreign income brings about many windfall benefits to Thailand through her export growth such as rise in both nominal and real GDP's, considerable improvement in balance of payments deficit, etc., without giving any unfavorable effects such as inflationary pressures unlike the previous case of baht devaluation. The present case is the growth led by exports but helped by lucky conditions in foreign countries which Thailand cannot always expect to exist. The previous case, on the other hand, has much in common with the growth through import substitution. It is quite interesting to see in the Thai economy that exports do not increase significantly while imports decrease considerably when the exchange rate is devalued.

III-3 Sustained Shocks on the Import Price of Raw Materials and Fuels and the Export Price of Agricultural Products

Sustained shocks were given also to two important price variables in the Thai international trade. First, the import price of raw materials and fuels (PMRM\$) was increased by 10% for the 1972-1976 period. Second, the export price of agricultural products (PXGAG\$) was increased by 10% for the same simulation period. These two cases seem to be useful to analyze the performance of Thai economy in the first half of the 1970's. In that period, the Thai economy, like many other developing countries, suffered from the oil shocks (1973-74) but, at the same time, enjoyed the boom in primary commodities (1972-74) which offset their unfavorable effects.¹⁷⁾ As a result, Thailand could show a good performance in GDP growth and balance of payments even during the period of oil shocks, where most of the developed countries experienced rather severe recessions under balance of payments pressures. To analyze this situation properly, however, it seems better to investigate

¹⁷⁾ For a general description of the commodities export boom in the ESCAP region, see ESCAP [1978], pp. 39-44.

not only the case of positive shocks mentioned above but also the case of negative shocks where PMRM and PXGAG respectively are decreased by 10% for the simulation period 1972–1976.

Average elasticities corresponding to positive shocks are summarized in Table 4, while those corresponding to negative shocks are summarized in Table 5.¹⁸⁾ No remarkable differences are found between the two tables though the elasticities of negative shocks are slightly bigger than those of positive shocks in almost all cases. The BOT model may be said to give almost symmetrical results on policy simulations whether the exogenous shocks are given in the positive direction or in the negative direction.

As seen from Table 4 (or Table 5), the rise in import price of raw materials and fuels (PMRM\$) causes negative or unfavorable effects on such key variables as balance of payments, real productions (except GDPAGR), non-agricultural employment and general price levels. On the contrary, the rise in export price of agricultural products (PXGAG\$) causes positive or favorable effects on the same variables. However, the favorable effects of the rise in PXGAG\$ are considerably larger in degree than the unfavorable effects of the rise in PMRM\$. This seems to be due to the industrial structure of Thailand where agriculture still occupies a significant position not only in exports but also in productions. According to our estimates of average elasticities, only 2% increase in *PXGAG\$* is enough to offset the unfavorable effects

Table 4Elasticities with Respect to Import
Price of Raw Materials and Fuels
and Export Price of Agricultural
Products, Average Results for
1972-1976*

	Import pric materials a Whole system		Export pri cultural Whole system	ce of agri- l products Real sector
GDP	.041	.046	.204	.225
GDPAG	.084	.087	.276	.288
GDPNA	.022	.028	.172	.196
XGS	.027	.026	.515	.515
MGS	.071	.079	.203	.240
- USVF	0873	-1.042	4.977	4.34 5
UBP\$	517	<u> </u>	4.784	
FKFBPF	O .265		117	<u> </u>
YLBNA	.037	.042	.128	.150
GDPR	017	015	.070	.076
GDPAGI	R .004	.003	.022	.021
GDPNA	R —.025	023	.090	.099
XGSR	141	142	150	154
XGAGR	.003	.002	091	092
XGNAR	409	411	042	050
XSR	027	029	846	850
MGSR	262	253	.185	.223
MRMR	824	814	.251	.290
MKR	.099	.113	.127	.184
MCR	017	016	.115	.116
MSR	.026	.030	.291	.304
NEMNA	050	047	.185	.200
WGRNA	.091	.093	060	052
PD	.093	.096	.014	.029
PGDAG	.079	.082	.251	.264
PGDNA	.048	.052	.078	.093
RLCB	.047		.210	
RLF C	.022		.004	-
RIB	.003		.214	

* The figures here are based on the case of 10% increase in *PMRM\$* or *PXGAG\$* for the 1972–1976 period. See Table 5 for the figures based on the opposite case.

¹⁸⁾ See Tables A.5 and A.6 for positive shocks while Tables A.7 and A.8 for negative shocks.

Table 5Elasticities with Respect to Import
Price of Raw Materials and Fuels
and Export Price of Agricultural
Products, Average Results for 1972–
1976: the Case of Negative Shocks*

		rice of raw		rice of agri-
	Whole	and fuels Real	Whole	l products Real
	system	sector	system	sector
GDP	.049	.054	.208	.229
GDPAG	.102	.104	.297	.309
GDPNA	.025	.032	.167	.193
XGS	.028	.028	.513	.513
MGS	.083	.093	.200	.237
- USVFO	-1.082	-1.280	4.998	4.367
UBP\$	653		4.813	
FKFBPFO	.320		110	
YLBNA	.044	.050	.125	.147
GDPR	021	019	.070	.076
GDPAGR	.005	.004	.027	.025
GDPNAR	032	029	.089	.098
XGSR	165	167	179	183
XGAGR	.004	.003	111	112
XGNAR	479	481	042	050
XSR	034	035	-1.026	-1.031
MGSR	314	304	.182	.219
MRMR	988	975	.240	.279
MKR	.118	.134	.124	.182
MCR	021	020	.120	.122
MSR	.031	.035	.297	.311
NEMNA	064	059	.181	.196
WGRNA	.111	.113	061	054
PD	.112	.116	.013	.028
PGDAG	.096	.099	.268	.282
PGDNA	.058	.062	.076	.092
RLCB	.05 5		.216	
RLF C	.027		.002	_
RIB	.003		.232	

* The figures here are based on the case of 10% decrease in PMRM\$ or PXGAG\$ for the 1972–1976 period.

of 10% increase in *PMRM\$* in the case of current balance of paytmens (-USVFO), while only 3% in the case of real overall production (GDPR). It

must, however, be noted that the BOT model may underestimate the effects of changes in *PMRM\$*, because there exist no direct linkages from imports of raw materials and fuels (*MRMR*) to real productions (*GDPNAR*) in the BOT model which employs production functions of the ordinary value added type. Still, our simulation results may be considered as a quantitative evidence which explains the good performance of the Thai economy during the oil shock period.

The three interest rates (RLCB, RLFC and RIB) are affected in a different manner by the changes in PMRM\$ and PXGAG\$. This is due to the supply and demand structure of the financial sector and its interactions with the real sector (See Table 1). In other words, increases in PMRM\$ causes excess demand for loans of commercial banks (FLNCBBU) through the increase in private sector's demand for discounts of import bills and trust receipts at commercial banks (FDMCBBU) under the depressed phase of the national economy. On the other hand, increase in PXGAG\$ causes excess demand for loans of commercial banks (FLNCBBU) through the increase in foreign sector's demand for discounts of export bills at commercial banks (FDXCBFO) under the boomed phase of the national economy. Furthermore, whether the national economy is depressed or boomed is a crucial factor to determine the supply of funds for loans of both commercial banks and finance companies which depends on

such income variables as GDP and USVHH. By this structure of supply and demand interactions are generated our results on the three interest rates as shown in Table 4 or Table 5.

IV Concluding Remarks

We have stressed the general equilibrium nature of the Bank of Thailand model in clarifying its basic features. It is quite interesting to see that such an equilibrium system is effective in describing not only the real sector but also the financial sector of a developing country like Thailand. We have also applied the BOT model to various testing and policy simulations to check its workabilities and to derive policy implications for the Thai economy.

The BOT model is well formulated theoretically, and fairly workable empirically. It seems, however, that the BOT model has some minor deffects to be improved in the successive revisions in accordance with updated basic data. For example, first, the balance of payments variables to be determined only recursively have no effects on the essential part of the system. Second, the model tends to generate a slight but consistent bias for such key variables as production levels and corresponding prices. Third, there exist no direct linkages from imported raw materials and fuels to real productions in the system. These points may be worthy of detailed investigations in the subsequent researches for a new version of BOT model.

The BOT model is a system of non-

linear equations formulated in conformity with the Gauss-Seidel method to solve it. The appendix of this paper provides a very brief review of the Gauss-Seidel method.¹⁹⁾ It is hoped that the review is useful not only for a technical understanding of the BOT model but also for a reference in the actual computations of other non-linear systems.

Appendix: The Gauss-Seidel Method

The Gauss-Seidel method is an iterative technique for solving the non-linear system of equations. It can be illustrated, without loss of generality, by a simple case of three-equation system. First, write the three non-linear equations in the form of explicit functions:

$$y_1=f_1(y_2, y_3, z), \quad y_2=f_2(y_1, y_3, z)$$

and $y_3=f_3(y_1, y_2, z)$
where z is a vector of predetermined
variables with fixed values.

Then, the iteration begins with the values of y_i 's computed as:

$$y_{1}^{(1)} = f_{1}(y_{2}^{(0)}, y_{3}^{(0)}, z)$$

$$y_{2}^{(1)} = f_{2}(y_{1}^{(1)}, y_{3}^{(0)}, z)$$

$$y_{3}^{(1)} = f_{3}(y_{1}^{(1)}, y_{2}^{(1)}, z)$$

where

$$y_{i}^{(0)} = \text{initial value of } y_{i}, \text{ and}$$

$$y_{i}^{(1)} = \text{value of } y_{i} \text{ in the first}$$

iteration.

For the k-th iteration, we compute

$$\begin{cases} y_1^{(k)} = f_1(y_2^{(k-1)}, y_3^{(k-1)}, z) \\ y_2^{(k)} = f_2(y_1^{(k)}, y_3^{(k-1)}, z) \\ y_3^{(k)} = f_3(y_1^{(k)}, y_2^{(k)}, z) \end{cases}$$

19) See Johnson and van Peeterssen [1976] for various methods of solving nonlinear system of equations in relation to the Project LINK. This iterative process continues until the computed y_i 's satisfy some appropriate convergence criterion like

$$|y_i^{(k)} - y_i^{(k-1)}| < \epsilon_i$$
 (i=1, 2, 3)

where ϵ_i 's are sufficiently small numbers.²⁰⁾

This is the ordinary procedure of the Gauss-Seidel method. We have, however, applied a modified procedure to the BOT model, which computes the values of y_i 's in the k-th iteration as²¹⁾

$$\begin{pmatrix} y_1^{(k)} = y_1^{(k-1)} + 0.5 \\ (f_1(y_2^{(k-1)}, y_3^{(k-1)}, z) - y_1^{(k-1)}) \\ y_2^{(k)} = y_2^{(k-1)} + 0.5 \\ (f_2(y_1^{(k)}, y_3^{(k-1)}, z) - y_2^{(k-1)}) \\ y_3^{(k)} = y_3^{(k-1)} + 0.5 \\ (f_3(y_1^{(k)}, y_2^{(k)}, z) - y_3^{(k-1)}) \end{pmatrix}$$

It should be noted that the Gauss-Seidel method, whether it is the original version or the modified one, does not always give converged solutions to a system to be solved, depending on the nature of the system, the selection of initial values, and so on.

- 20) The convergence criterion $|y_i^{(k)}/y_i^{(k-1)}-1.0| < 10^{-5}$ (for any *i*) was employed for the BOT model.
- 21) This modified version was proposed by Mr. Satoshi Yasuda of Kyoto University. He was kind enough to let the author use his computer program on the Gauss-Seidel method.

References

- Chaipravat, Olarn. 1976. A Macroeconometric Model of Thailand with Special Emphasis on the Mechanism of Domestic Price Determination for a Small, Open Economy. In *Central Bank Macroeconometric Modelling in Pacific Basin Countries*. (Proceedings of the First Pacific Basin Central Bank Conference on Econometric Modelling, held at the Federal Reserve Bank of San Francisco, May 27-29, 1975) Federal Reserve Bank of San Francisco.
- Chaipravat, Olarn, Meesook, Kanitta; and Ganjarerndee, Siri. 1979a. Bank of Thailand Model of the Thai Economy. DP/79/25. Bangkok: Department of Economic Research, Bank of Thailand.
- Johnson, K. N.; and Peeterssen, A. van. 1976. Solving and Simulating the LINK System. In *The Models of Project LINK*, edited by J. L. Waelbroeck. North-Holland.
- Ramangkura, Virabongsa. 1975. A Macroeconometric Model for Thailand: A Classical Approach. In Finance, Trade and Economic Development in Thailand: Essays in Honor of Khunying Suparb Yossundara, edited by Prateep Sondysuvan. Bangkok: Sompong Press.
- ———. 1976. Chulalongkorn Econometric Model. Bangkok: Economic Research Unit, Faculty of Economics, Chulalongkorn University.
- Soonthornsima, Chinawoot. 1964. A Macroeconometric Model for Economic Development of Thailand. Bangkok: N. A. Intrasuksri.
- United Nations (ESCAP). 1978. Economic and Social Survey of Asia and the Pacific, 1977. Bangkok: United Nations (ESCAP).

Table A.1	Sustained	Shocks on	CONGV ((10%)	up for	1972-76)*	
-----------	-----------	-----------	---------	-------	--------	-----------	--

		1972	1973	1974	1975	1976	Average**
GDPR	(Variable 5):						
(1W)	Standard, WS	163,717	180,568	201,108	211,629	224,976	196,400
$(1\mathbf{R})$	// RS	163,951	180,550	200,520	212,110	224,839	196,394
(2W)	Shocked, WS	164,792	181,405	202,060	212,457	225,748	197,292
	2						
$(2 \mathbf{R})$	/ RS	165,138	181,497	201,668	213,073	225,800	197,435
(3W)	(2W) - (1W)	1,075	836	951	828	771	892
(3 R)	(2R) - (1R)	1,186	947	1,148	963	961	1,041
(4W)	(3W)/(1W)	.0066	.0046	.0047	.0039	.0034	.0045
(4 R)	(3R)/(1R)	.0072	.0052	.0057	.0045	.0043	.0053
GDP (1	Variable 8):						
(1W)	Standard, WS	172,292	208,868	274,023	296,591	336,220	257,599
(1 R)	// RS	173,197	208,747	271,060	298,800	335,670	257,495
(2W)	Shocked, WS	176,376	212,729	279,559	302,494	343,059	262,844
(2 R)	// RS	177,730	213,031	277,389	305,295	343,258	263,341
(3W)	(2W) - (1W)	4,084	3,861	5,536	5,902	6,839	5,244
(3 R)	(2R) - (1R)	4,533	4,283	6,329	6,495	7,588	5,845
(4W)	(3W)/(1W)	.0237	.0185	.0202	.0199	.0203	.0204
(4 R)	(3R)/(1R)	.0262	.0205	.0233	.0217	.0205	.0207
	ariable 70):						
``	,	1.0410	1 1040	1 9 4 9 9	1 4100	1 5100	1.0040
(1W)	Standard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.2848
$(1 \mathbf{R})$	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.2844
(2W)	Shocked, WS	1.0580	1.1190	1.3652	1.4429	1.5434	1.3057
(2 R)	// RS	1.0633	1.1200	1.3569	1.4528	1.5441	1.3074
(3W)	(2W) - (1W)	.0161	.0151	.0224	.0246	.0265	.0209
(3 R)	(2R) - (1R)	.0178	.0166	.0254	.0266	.0288	.0230
(4W)	(3W)/(1W)	.0154	.0136	.0167	.0174	.0175	.0163
(4 R)	(3R)/(1R)	.0170	.0150	.0191	.0187	.0190	.0179
USVFC	O\$ (Variable 101):						
(1W)	Standard, WS	192.86	-175.66	-239.05	203.82	785.30	153.45
$(1 \mathbf{R})$	// RS	207.48	-175.81	-296.03	240.23	779.45	151.06
(2W)	Shocked, WS	245.93	-117.02	-145.22	307.96	915.73	241.47
$(2 \mathbf{R})$	// RS	268.29	-109.04	-187.53	358.58	925.80	251.22
(3W)	(2W) - (1W)	53.06	58.64	93.83	104.13	130.43	88.02
(3 R)	(2R) - (1R)	60.81	66.77	108.49	118.35	146.35	100.15
(4W)	(3W)/(1W)	.2752	3338	3925	.5109	.1661	.5736
(4 R)	(3R)/(1R)	.2931	3798	3665	.4927	.1878	.6630
RLCB	(Variable 145):						
(1W)	Standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.4404
$(1 \mathbf{v} \mathbf{v})$ $(1 \mathbf{R})$	<i>w</i> RS	10.7000	10.8201	12.3000	12.2040		
	Shocked, WS	11.2875	11.0664			11.4300	11.4300
(2W)				11.8804	12.5520	11.7104	11.6993
$(2 \mathbf{R})$	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(3W)	(2W) - (1W)	.1893	.2402	.2808	.2880	.2963	.2589
(3 R)	(2R) - (1R)	.0000	.0000	.0000	.0000	.0000	.0000
(4W)	(3W)/(1W)	.0171	.0222	.0242	.0235	.0260	.0226
(4 R)	(3R)/(1R)	.0000	.0000	.0000	.0000	.0000	.0000

* Standard, WS=Standard Simulation based on the whole system.

//

RS= " " " " " real sector.

Shocked, WS= Shocked " " whole system. " " RS= " "

" " " real sector.

****** Average=Arithmetic average for 1972–76.

M. Ezaki:	The Bank of Thailand Model and Its Application to Policy Simulations

		Sustained Sho			()0 1	·	
		1972	1973	1974	1975	1976	Average
GDPR	(Variable 5):						
(1W)	Standard, WS	163,717	180,568	201,108	211,629	224,976	169,400
(1 R)	" RS	163,951	180,550	200,520	212,110	224,839	196,394
(2W)	Shocked, WS	164,157	180,927	201,609	212,398	225,955	197,009
(2 R)	// RS	164,480	180,960	201,104	213,002	225,962	197,104
(3W)	(2W) - (1W)	440	358	500	768	978	609
(3 R)	(2R) - (1R)	528	418	584	892	1,123	709
(4W)	(3W)/(1W)	.0027	.0020	.0025	.0036	.0044	.0031
(4 R)	(3R)/(1R)	.0032	.0023	.0029	.0042	.0050	.0036
GDP (Variable 8):						
(1W)	Standard, WS	172,292	208,868	274,023	296,591	336,220	257,599
(1 R)	// RS	173,197	208,747	271,060	298,800	335,670	257,495
(2W)	Shocked, WS	174,029	209,936	275,234	298,701	338,973	259,374
$(2 \mathbf{R})$	// RS	175,283	210,037	272,585	301,426	339,037	259,674
(3W)	(2W) - (1W)	1,737	1,067	1,211	2,109	2,753	1,775
(3 R)	(2R) - (1R)	2,086	1,289	1,525	2,626	3,367	2,179
(4W)	(3W)/(1W)	.0101	.0051	.0044	.0071	.0082	.0069
(4 R)	(3R)/(1R)	.0120	.0062	.0056	.0088	.0100	.0085
PD(V	ariable 70):						
(1W)	Standard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.2848
(1 R)	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.2844
(2W)	Shocked, WS	1.0488	1.1073	1.3456	1.4240	1.5230	1.2897
(2 R)	// RS	1.0538	1.1076	1.3355	1.4336	1.5234	1.2908
(3 W)	(2W) - (1W)	.0069	.0033	.0028	.0057	.0062	.0050
(3 R)	(2R) - (1R)	.0082	.0041	.0040	.0074	.0081	.0064
(4W)	(3W)/(1W)	.0066	.0030	.0021	.0040	.0041	.0039
(4 R)	(3R)/(1R)	.0079	.0037	.0030	.0052	.0053	.0050
USVF	O\$ (Variable 101)):					
(1W)	Standard, WS	192.8697	- 175.6693	-239.0589	203.8281	785.3048	153.4549
(1 R)	// RS			-296.0324	240.2303	779.4506	151.0629
(2W)	Shocked, WS		-147.5729	-21 0.43 59	251.7036	854.3296	195.3079
(2 R)	// RS		-143.1929		299.1607	862.2455	201.2249
(3W)	(2W) - (1W)	35.6456	28.0963	28.6229	47.8755	69.0248	41.8530
(3 R)	(2R) - (1R)	41.6174	32.6236	34.8438	58.9304	82.7949	50.1620
(4W)	(3W)/(1W)	.1848	1599	1197	.2349	.0879	.2727
(4 R)	(3R)/(1R)	.2006	1856	1177	.2453	.1062	.3321
BLCB	(Variable 145):						
(1W)	Standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.4404
(1 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(2W)	Shocked, WS	11.2387	10.9526	11.7117	12.4190	11.6110	11.5866
(2 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(3 W)	(2W) - (1W)	.1405	.1264	.1120	.1550	.1969	.1462
(3 R)	(2R) - (1R)	.0000	.0000	.0000	.0000	.0000	.0000
(4W)	(3W)/(1W)	.0127	.0117	.0097	.0126	.0173	.0128
• /		.0000					.0000

Table A.2 Sustained Shocks on IFXBS's and IFXGV's (10% up for 1972-76)

Table A.3Sustained Shocks on ZXR\$ (10% up for 1972–76)

		1972	1973	1974	1975	1976	Averag
GDPR	(Variable 5):						
(1W)	Standard, WS	163,717	180,568	201,108	211,629	224,976	196,400
(1 R)	" RS	163,951	180,550	200,520	212,110	224,839	196,394
(2W)	Shocked, WS	165,909	181,596	202,389	212,100	225,057	197,410
(2 R)	// RS	166,486	181,836	202,299	212,987	225,358	197,793
(3W)	(2W) - (1W)	2,192	1,027	1,280	470	80	1,010
(3 R)	(2R) - (1R)	2,534	1,286	1,779	877	518	1,399
(4W)	(3W)/(1W)	.0134	.0057	.0064	.0022	.0004	.005
(4 R)	(3R)/(1R)	.0155	.0071	.0089	.0041	.0023	.007
GDP ((Variable 8):						
(1W)	Standard, WS	172,292	208,868	274,023	296,591	336,220	257,59
(1 R)	// RS	173,197	208,747	271,060	298,800	335,670	257,49
(2W)	Shocked, WS	182,738	219,323	290,742	312,451	354,156	271,882
(2 R)	// RS	185,070	220,302	289,923	316,573	355,455	273,46
(3W)	(2W) - (1W)	10,446	10,455	16,718	15,859	17,936	14,28
(3 R)	(2R) - (1R)	11,873	11,555	18,863	17,773	19,785	15,97
(4W)	(3W)/(1W)	.0606	.0501	.0610	.0535	.0533	.055
(4 R)	(3R)/(1R)	.0686	.0554	.0696	.0595	.0589	.062
PD (V	ariable 70):						
(1W)	Standard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.284
(1 R)	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.284
(2W)	Shocked, WS	1.0941	1.1540	1.4161	1.4910	1.6001	1.351
(2 R)	// RS	1.1035	1.1577	1.4126	1.5061	1.6043	1.356
(3W)	(2W) - (1W)	.0522	.0500	.0733	.0727	.0832	.0663
(3 R)	(2R) - (1R)	.0580	.0542	.0811	.0799	.0890	.0724
(4W)	(3W)/(1W)	.0501	.0453	.0546	.0513	.0549	.051
(4 R)	(3R)/(1R)	.0554	.0491	.0609	.0560	.0587	.0564
USVF	C\$ (Variable 101):						
(1W)	Standard, WS	192.8697		-239.0589	203.8281	785.3048	153.454
(1 R)	// RS	207.4824			240.2303	779.4506	151.062
(2W)	Shocked, WS	139.8364		-279.5664	116.1889	677.8304	81.653
(2 R)	// RS		-226.2294		188.7451	710.2964	110.897
(3W)	(2W) - (1W)	53.0333		-40.5075			
(3 R)	(2R) - (1R)		-50.4130	2.7113	-51.4851	69.1541	-40.1654
(4W)	(3W)/(1W)	2750	.4005	.1694	4300	1369	4679
(4 R)	(3R)/(1R)	1566	.2867	0092	2143	0887	265
RLCB	(Variable 145):						
(1W)	Standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.4404
(1 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.430
(2W)	Shocked, WS	11.6009	11.4675	12.3964	13.0658	12.2208	12.150
(2 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(3W)	(2W) - (1W)	.5027	.6413	.7968	.8017	.8067	.7099
(3 R)	(2R) - (1R)	.0000	.0000	.0000	.0000	.0000	.000
(4W)	(3W)/(1W)	.0453	.0592	.0687	.0654	.0707	.0620
× · · /	(3R)/(1R)	.0000	.0000	.0000	.0000	.0000	.0000

-

TT.

M. Ezaki:	The Bank of Thailand Model and Its Application to Policy Simulations	
-----------	--	--

_	/	1972	1973	1974	1975	1976	Average
	(Variable 5):						
(1W)	Standard, WS	163,717	180,568	201,108	211,629	224,976	196,400
(1 R)	" RS	163,951	180,550	200,520	212,110	224,239	196,394
(2W)	Shocked, WS	164,814	181,455	202,334	212,807	226,267	197,535
(2 R)	// RS	165,185	181,560	201,963	213,444	226,325	197,695
(3 W)	(2W) - (1W)	1,097	886	1,225	1,177	1,290	1,13
(3 R)	(2R) - (1R)	1,233	1,010	1,443	1,334	1,485	1,30
(4W)	(3W)/(1W)	.0067	.0049	.0061	.0056	.0057	.005
(4 R)	(3R)/(1R)	.0075	.0056	.0072	.0063	.0066	.006
GDP (Variable 8):						
(1W)	Standard, WS	172,292	208,868	274,023	296,591	336,220	257,59
(1 R)	// RS	173,197	208,747	271,060	298,800	335,670	257,49
(2W)	Shocked, WS	176,433	212,680	279,714	301,980	342,339	262,63
(2 R)	// RS	177,888	213,033	277,625	304,844	342,553	263,18
(3W)	(2W) - (1W)	4,140	3,811	5,690	5,388	6,139	5,03
(3 R)	(2R) - (1R)	4,691	4,285	6,565	6,044	6,883	5,69
(4W)	(3W)/(1W)	.0240	.0183	.0208	.0182	.0183	.019
(4 R)	(3R)/(1R)	.0271	.0205	.0242	.0202	.0205	.022
PD(V	Variable 70):						
(1W)	Standard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.284
$(1 \mathbf{R})$	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.284
(2W)	Shocked, WS	1.0577	1.1161	1.3597	1.4336	1.5328	1.300
$(2 \mathbf{R})$	// RS	1.0634	1.1173	1.3517	1.4437	1.5335	1. 3 01
(3W)	(2W) - (1W)	.0158	.0122	.0170	.0154	.0160	.015
(3 R)	(2R) - (1R)	.0179	.0138	.0202	.0176	.0181	.017
(4W)	(3W)/(1W)	.0152	.0110	.0126	.0108	.0105	.011
(4 R)	(3R)/(1R)	.0171	.0125	.0152	.0123	.0120	.013
USVF	O\$ (Variable 101):						
(1W)	Standard, WS	192.8697	-175.6693	-239.0589	203.8281	785.3048	153.454
(1 R)	// RS		-175.8165		240.2303	779.4506	151.062
(2W)	Shocked, WS		-231.9461		133.7070	713.6507	95.131
(2 R)	// RS		-222.9634		184.8039	723.6314	105.858
(3 W)	(2W) - (1W)	36.4374	- 56.2768	-57.1253	-70.1211	-71.6541	58.323
(3 R)	(2R) - (1R)	-27.3045	-47.1469	-40.3261	55.4263	-55.8192	-45.204
(4W)	(3W)/(1W)	1889	.3204	.2390	3440	0912	380
(4 R)	(3R)/(1R)	1316	.2682	.1362	2307	0716	299
RLCB	(Variable 145):						
(1W)	Standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.440
(1 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.430
(2W)	Shocked, WS	11.3248	11.0993	11.9216	12.5714	11.7208	11.727
(2 W) (2 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.430
(3W)	(2W) - (1W)	.2266	.2732	.3219	.3074	.3067	.287
(011)		.0000	.0000	.0000	.0000	.0000	.000
(3R)	(7K) = (1K)						
(3 R) (4W)	(2R) - (1R) (3W)/(1W)	.0000	.0000	.0278	.0251	.0269	.025

Table A.4Sustained Shocks on GDPWR's (10% up for 1972–76)

Table A.5 Sustained Shocks on PMRM (10% up for 1972-76)

		1972	1973	1974	1975	1976	Averag
GDPR	(Variable 5):						
(1W)	Standard, WS	163,717	180,568	201,108	211,629	224,976	196,400
(1 R)	// RS	163,951	180,550	200,520	212,110	224,839	196,394
(2W)	Shocked, WS	163,931	180,307	200,658	211,127	224,338	196,072
(2 R)	// RS	164,209	180,296	200,089	211,659	224,222	196,095
(3W)	(2W) - (1W)	214	-261	-449	- 502	-638	- 327
(3 R)	(2R) - (1R)	257	-254	-430	-450	-616	- 298
(4W)	(3W)/(1W)	.0013	0014	0022	0024	0028	0017
(4 R)	(3R)/(1R)	.0016	0014	0021	0021	0027	0015
GDP (Variable 8):						
(1W)	Standard, WS	172,292	208,868	274,023	296,591	336,220	257,599
$(1 \mathbf{R})$	// RS	173,197	208,747	271,060	298,800	335,670	257,495
(2W)	Shocked, WS	173,379	209,407	274,877	297,832	337,823	258,664
(2 R)	// RS	174,461	209,326	271,979	300,262	337,361	258,678
(3W)	(2W) - (1W)	1,087	538	854	1,240	1,603	1,064
(3 R)	(2R) - (1R)	1,264	579	919	1,461	1,691	1,183
(4W)	(3W)/(1W)	.0063	.0026	.0031	.0042	.0048	.0041
(4 R)	(3R)/(1R)	.0073	.0028	.0034	.0049	.0050	.0046
PD (V	ariable 70):					· .	
(1W)	Standard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.2848
(1 R)	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.2844
(2W)	Shocked, WS	1.0516	1.1127	1.3535	1.4317	1.5339	1.2967
(2 R)	// RS	1.0561	1.1123	1.3423	1.4405	1.5326	1.2968
(3W)	(2W) - (1W)	.0097	.0087	.0107	.0134	.0171	.0119
(3 R)	(2R) - (1R)	.0105	.0089	.0108	.0144	.0173	.0124
(4W)	(3W)/(1W)	.0093	.0079	.0080	.0095	.0112	.0093
(4 R)	(3R)/(1R)	.0101	.0080	.0081	.0101	.0114	.0096
USVF	O\$ (Variable 101):						
(1W)	Standard, WS	192,8697	-175.6693	-239.0589	203.8281	785.3048	153.4549
(1 R)	// RS	207.4824		-296.0324	240.2303	779.4506	151.0629
(2W)	Shocked, WS	203.8456	-171.1288	-228.7776	221.13 56	809.1330	166.8416
(2 R)	// RS	221.3397	-170.2025	-284.5880	262.0247	805. 304 7	166.7752
(3 W)	(2W) - (1W)	10.9759	4.5405	10.2813	17.3075	23.8282	13.3862
(3 R)	(2R) - (1R)	13.8573	5.6140	11.4444	21.7944	25.8541	15.7128
(4W)	(3W)/(1W)	.0569	0258	0430	.0849	.0303	.0872
(4 R)	(3R)/(1R)	.0668	0319	0387	.0907	.0332	.1040
RLCB	(Variable 145):						
(1W)	Standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.4404
(1 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(2W)	Shocked, WS	11.1552	10.8681	11.6403	12.3202	11.4844	11.4936
(2 R)	" RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(3 W)	(2W) - (1W)	.0570	.0420	.0406	.0561	.0703	.0532
(3 R)	(2R) - (1R)	.0000	.0000	.0000	.0000	.0000	.0000
(4W)	(3W)/(1W)	.0051	.0039	.0035	.0046	.0062	.0047
(4 R)	(3R)/(1R)	.0000	.0000	.0000	.0000	.0000	.0000

•· ··· •·

M. Ezaki:	The Bank of Thailand Model and Its Application to Policy Simulations
-----------	--

		1972	1973	1974	1975	1976	Averag
GDPR (V	Variable 5):						0
(1W) S	tandard, WS	163,717	180,568	201,108	211,629	224,976	196,400
(1 R)	// RS	163,951	180,550	200,520	212,110	224,839	196, 3 94
	hocked, WS	163,959	181,671	202,895	213,385	226,918	197,760
(2 R)	// RS	164,226	181,756	202,495	213,998	226,927	197,88
	2W) - (1W)	242	1,102	1,786	1,755	1,941	1,36
	(1R)	274	1,206	1,974	1,888	2,087	1,48
	3W)/(1W)	.0015	.0061	.0089	.0083	.0086	.007
	3R)/(1R)	.0017	.0067	.0098	.0089	.0093	.007
GDP (Va	vriable 8):						
	tandard, WS	172,292	208,868	274,023	296,591	336,220	257,59
$(1\mathbf{R})$	// RS	172,292	208,300	271,020	298,800	33 5,670	257,49
. ,	bhocked, WS	174,189	213,226	280,933	302,866	343,063	262,85
$(2 \mathbf{R})$ (2 R)	// RS	175,227	213,544	278,797	305,704	343,140	263,282
	2W - (1W)	1,896	4,357	6,909	6,274	6,843	205,28
	$(100)^{-1}$ (1R)	2,030	4,797	7,737	6,903	0,045 7,470	5,78
	3W)/(1W)	.0110	.0209	.0252	.0212	.0204	.020
	(100) (3R)/(1R)	.0110	.0230	.0285	.0231	.0223	.020
		.0117	.0230	.0203	.04.01	.0423	.044
	iable 70):	1 0 4 1 0	1 10 40	1 2 4 2 2	1 4100	1 5100	1 00 4
	tandard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.284
$(1 \mathbf{R})$	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.284
	bhocked, WS	1.0405	1.1062	1.3485	1.4198	1.5176	1.286
(2 R)	// RS	1.0447	1.1073	1.3404	1.4300	1.5180	1.288
	2W) - (1W)	0014	.0023	.0057	.0016	.0007	.001
	(1R) - (1R)	0009	.0039	.0089	.0038	.0027	.003
	3W)/(1W)	0013	.0020	.0043	.0011	.0005	.001
$(4 \mathbf{R})$ (2	3R)/(1R)	0008	.0035	.0067	.0027	.0018	.002
	(Variable 101):						
. ,	•	192.8697			203.8281	785.3048	153.454
(1 R)					240.2303	779.4506	151.062
	hocked, WS	145.2700	-237.4501	— 318. 9845	106.4552	690.2807	77.114
(2 R)	// RS	161.9843	-229.7509	-359.99 16	156.7573	698.1194	85.423
	,	-47.5997	-61.7809	79.9256	-97.3729	-95.0241	- 76 .340
(3 R) (3	(2R) - (1R) - (1R)	- 45.4981	-53.9344	-63.9592		81.33 12	-65.639
(4W) (3W)/(1W)	2468	.3517	.3343	4777	1210	497
(4 R) (3R)/(1R)	2193	.3068	.2161	3475	1043	434
RLCB (V	Variable 145):						
•	standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.440
(1 R)	" RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.430
(2W) S	shocked, WS	11.1654	11.0428	11.9150	12.5717	11.7100	11.681
(2 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.430
(3 W) (2W) - (1W)	.0672	.2166	.3154	.3077	.2959	.240
(3 R) ((1R) - (1R)	.0000	.0000	.0000	.0000	.0000	.000
(4W) (3W)/(1W)	.0061	.0200	.0272	.0251	.0259	.021
(4 R) (3R)/(1R)	.0000	.0000	.0000	.0000	.0000	.000

Table A.6 Sustained Shocks on *PXGAG* (10°_{20} up for 1972–76)

Table A.7 Sustained Shocks on PMRM\$ (10% down for 1972–76)

				· · · · · · · · · · · · · · · · · · ·			
0000	/** . ** =>	1972	1973	1974	1975	1976	Average
	(Variable 5):			001 105		00:075	• · · · · ·
(1W)	Standard, WS	163,717	180,568	201,108	211,629	224,976	196,400
(1 R)	" RS	163,951	180,550	200,520	212,110	224,839	196,394
(2W)	Shocked, WS	163,463	180,887	201,675	212,256	225,776	196,812
(2 R)	// RS	163,649	1 80,8 57	201,065	212,671	225,606	196,770
(3W)	(2W) - (1W)	-253	319	566	626	800	411
(3 R)	(2R) - (1R)	-302	307	545	561	767	37 5
(4W)	(3W)/(1W)	0015	.0018	.0018	.0030	.003 6	.0021
(4 R)	(3R)/(1R)	0018	.0017	.0017	.0026	.0034	.0019
GDP (Variable 8):						
(1W)	Standard, WS	172,292	208,868	274,023	296,591	336,220	257,599
(1 R)	// RS	173,197	208,747	271,060	298,800	335,670	257,495
(2W)	Shocked, WS	171,005	208,208	273,027	295,106	334,340	256,337
(2 R)	// RS	171,715	208,031	270,010	297,044	333 ,669	256,094
(3W)	(2W) - (1W)	-1,286	-660	-995		-1,879	-1,261
(3 R)	(2R) - (1R)	-1,481	716	-1,049	-1,755	-2,000	-1,400
(4W)	(3W)/(1W)	0075	0032	0036	0050	0056	0049
(4 R)	(3R)/(1R)	0086	0034	0039	0059	0060	0054
PD (V	Variable 70):						
(1W)	Standard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.2848
(1 R)	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.2844
(2W)	Shocked, WS	1.0303	1.0933	1.3298	1.4020	1.4965	1.2704
(2 R)	// RS	1.0330	1.0926	1.3185	1.4089	1.4946	1.2695
(3 W)	(2W) - (1W)	0116	0107	0130	0163	0204	0144
(3 R)	(2R) - (1R)	0125	0109	0130	0173	0207	0149
(4W)	(3 W)/(1 W)	0112	0097	0096	0115	0134	0112
(4 R)	(3R)/(1 R)	0119	0099	0097	0121	0137	0116
USVF	O\$ (Variable 101):						
(1 W)	Standard, WS	192. 8 697	-175.6693	-239.0589	203.8281	785.3048	153,4549
(1 R)	// RS	207.4824	-175.8165	296.0324	240.2303	779.4506	151.0629
(2W)	Shocked, WS	179.7975	-181.8823	-251.8356	182.2215	756.0055	136.8613
(2 R)	// RS	191.2179	183.3980	- 309.6569	213.3094	747.2812	131.7507
(3 W)	(2W) - (1W)	-13.0722	-6.2131	-12.7767	21.6066		- 16.5936
(3 R)	(2R) - (1R)	-16.2645	-7.5815	-13.6245	-26.9209	-32.1693	-19.3121
(4W)	(3W)/(1W)	0678	.03 54	.0534	1060	0373	103
(4 R)	(3R)/(1R)	0784	.0431	.0460	1121	0413	1278
RLCB	(Variable 145):						
(1W)	Standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.4404
(1 R)	" RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(2W)	Shocked, WS	11.0298	10.7753	11.5520	12.1970	11.3311	11.377(
(2 R)	" RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(3 W)	(2W) - (1W)	0684	0509	0476	0671	0829	0634
(3 R)	(2R) - (1R)	.0000	.0000	.0000	.0000	.0000	.0000
(4W)	(3W)/(1W)	0062	0047	0041	0055	0073	.0055
(4 R)	(3R)/(1R)	.0000	.0000	.0000	.0000	.0000	.0000

-

.....

M. EZAKI: The bank of Thanand Model and Its Application to Folicy Simulations	M. Ezaki:	: The Bank of Thailand Model and Its Applic	ation to Policy Simulations
---	-----------	---	-----------------------------

	Table A.o				o down lor 19		
		1972	1973	1974	1975	1976	Average
GDPR	(Variable 5):						
(1W)	Standard, WS	163,717	180,568	201,108	211,629	224,97 6	196,400
(1 R)	// RS	163,951	180,550	200,520	212,110	224,839	196,394
(2W)	Shocked, WS	163,512	179,438	199,280	209,856	223,030	195,023
(2 R)	// RS	163,718	179,314	198,496	210,195	222,740	194,893
(3 W)	(2W) - (1W)	-204	-1,130	-1,827	-1,772	-1,946	-1,376
(3 R)	(2R) - (1R)	-233	-1,236	-2,023	-1,914		-1,501
(4W)	(3W)/(1W)	0012	0063	0091	0084	0087	0070
(4 R)	(3R)/(1R)	0014	0068	0101	0090	0093	—.007 6
GDP (Variable 8):						
(1W)	Standard, WS	172,292	208,868	274,023	296,591	336,220	257,599
(1 R)	// RS	173,197	208,747	271,060	298,800	335,670	257,495
(2W)	Shocked, WS	170,453	204,414	266,960	290,174	329,236	252,247
(2 R)	// RS	171,240	203,852	263,176	291,732	328,030	251,606
(3 W)	(2W) - (1W)	-1,839	-4,454	-7,062	-6,416	-6,983	-5,351
(3 R)	(2R) - (1R)	-1,956	-4,895	- 7,884	7,067	-7,639	- 5,888
(4W)	(3W)/(1W)	0113	0213	0258	0216	0208	0208
(4 R)	(3R)/(1R)	0113	0234	0291	0237	0228	0229
PD(V)	Tariable 70):						
(1W)	Standard, WS	1.0419	1.1040	1.3428	1.4183	1.5169	1.2848
(1 R)	// RS	1.0455	1.1035	1.3315	1.4262	1.5153	1.2844
(2W)	Shocked, WS	1.0441	1.1013	1.3369	1.4166	1.5161	1.2831
(2 R)	// RS	1.0472	1.0996	1.3223	1.4222	1.5125	1.2808
(3W)	(2W) - (1W)	.0021	0022	0059	0017	0007	0017
(3 R)	(2R) - (1R)	.0017	0038	0092	0040	0028	0036
(4W)	(3W)/(1W)	.0021	0020	0044	0012	0005	0013
(4 R)	(3R)/(1R)	.0016	0035	0069	0028	0019	0028
USVF	O\$ (Variable 101):						
(1W)	Standard, WS	192.8697	-175.6693	-239.0589	203.8281	785.3048	15 3.4 549
(1 R)	// RS	207.4824			240.2303	779.4506	151.0629
(2W)	Shocked, WS	241.9104	-113.7914		301.2311	880.2485	230.1112
$(2 \mathbf{R})$	// RS	254.6882	-121.6733	-231.4221	323.6479	859.9621	217.0406
(3W)	(2W) - (1W)	49.0407	61.8778	80.0162	97.4030	94.9437	76.6563
$(\mathbf{3R})$	(2R) - (1R)	47.2058	54.1432	64.6103	83.4176	80.5116	65.9777
(4W)	(3W)/(1W)	.2543	3522	3347	.4779	.1209	.4995
(4 R)	(3R)/(1R)	.2275	3080	2183	.3472	.1033	.4368
RLCB	(Variable 145):						
(1W)	Standard, WS	11.0982	10.8261	11.5996	12.2640	11.4141	11.4404
(1 R)	" RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(2W)	Shocked, WS	11. 035 6	10.6034	11.2728	11.9441	11.1081	11.1928
(2 R)	// RS	10.7000	10.7300	12.3000	11.9900	11.4300	11.4300
(3 W)	(2W) - (1W)	0626	2228	3269	3199	3060	2476
(3 R)	(2R) - (1R)	.0000	.0000	.0000	.0000	.0000	.0000
(4W)	(3W)/(1W)	0056	0206	0282	0261	0268	0216
•	· · · · ·				_		. – -

Table A.8 Sustained Shocks on PXGAG\$ (10% down for 1972-76)